Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential Role of B Cells and IL-17 Versus IFN-γ During Early and Late Rejection of Pig Islet Xenografts in Mice.

Identifieur interne : 000873 ( Main/Exploration ); précédent : 000872; suivant : 000874

Differential Role of B Cells and IL-17 Versus IFN-γ During Early and Late Rejection of Pig Islet Xenografts in Mice.

Auteurs : Hee Kap Kang [États-Unis] ; Shusen Wang ; Anil Dangi ; Xiaomin Zhang ; Amar Singh ; Lei Zhang ; James M. Rosati ; Wilma Suarez-Pinzon ; Xuelian Deng ; Xiaoyan Chen ; Edward B. Thorp ; Bernhard J. Hering ; Stephen D. Miller ; Xunrong Luo

Source :

RBID : pubmed:27893617

Descripteurs français

English descriptors

Abstract

BACKGROUND

Xenogeneic islet transplantation is an emerging therapeutic option for diabetic patients. However, immunological tolerance to xenogeneic islets remains a challenge.

METHODS

The current study used a pig-to-mouse discordant xenogeneic islet transplant model to examine antidonor xenogeneic immune responses during early and late rejection and to determine experimental therapeutic interventions that promote durable pig islet xenograft survival.

RESULTS

We found that during early acute rejection of pig islet xenografts, the rejecting hosts exhibited a heavy graft infiltration with B220 B cells and a robust antipig antibody production. In addition, early donor-stimulated IL-17 production, but not IFN-γ production, dominated during early acute rejection. Recipient treatment with donor apoptotic 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide-treated splenocytes significantly inhibited antidonor IL-17 response, and when combined with B cell depletion and a short course of rapamycin led to survival of pig islet xenografts beyond 100 days in approximately 65% recipients. Interestingly, treated recipients in this model experienced late rejection between 100 and 200 days posttransplant, which coincided with B cell reconstitution and an ensuing emergence of a robust antidonor IFN-γ, but not IL-17, response.

CONCLUSIONS

These findings reveal that early and late rejection of pig islet xenografts may be dominated by different immune responses and that maintenance of long-term xenogeneic tolerance will require strategies that target the temporal sequence of antixenogeneic immune responses.


DOI: 10.1097/TP.0000000000001489
PubMed: 27893617
PubMed Central: PMC5441974


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential Role of B Cells and IL-17 Versus IFN-γ During Early and Late Rejection of Pig Islet Xenografts in Mice.</title>
<author>
<name sortKey="Kang, Hee Kap" sort="Kang, Hee Kap" uniqKey="Kang H" first="Hee Kap" last="Kang">Hee Kap Kang</name>
<affiliation wicri:level="2">
<nlm:affiliation>1 Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL. 2 Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China. 3 Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL. 4 Department of Surgery, University of Minnesota, Schulze Diabetes Institute, Minneapolis, MN. 5 Division of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China. 6 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL. 7 Department of Microbiology and Immunology, Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>1 Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL. 2 Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China. 3 Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL. 4 Department of Surgery, University of Minnesota, Schulze Diabetes Institute, Minneapolis, MN. 5 Division of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China. 6 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL. 7 Department of Microbiology and Immunology, Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shusen" sort="Wang, Shusen" uniqKey="Wang S" first="Shusen" last="Wang">Shusen Wang</name>
</author>
<author>
<name sortKey="Dangi, Anil" sort="Dangi, Anil" uniqKey="Dangi A" first="Anil" last="Dangi">Anil Dangi</name>
</author>
<author>
<name sortKey="Zhang, Xiaomin" sort="Zhang, Xiaomin" uniqKey="Zhang X" first="Xiaomin" last="Zhang">Xiaomin Zhang</name>
</author>
<author>
<name sortKey="Singh, Amar" sort="Singh, Amar" uniqKey="Singh A" first="Amar" last="Singh">Amar Singh</name>
</author>
<author>
<name sortKey="Zhang, Lei" sort="Zhang, Lei" uniqKey="Zhang L" first="Lei" last="Zhang">Lei Zhang</name>
</author>
<author>
<name sortKey="Rosati, James M" sort="Rosati, James M" uniqKey="Rosati J" first="James M" last="Rosati">James M. Rosati</name>
</author>
<author>
<name sortKey="Suarez Pinzon, Wilma" sort="Suarez Pinzon, Wilma" uniqKey="Suarez Pinzon W" first="Wilma" last="Suarez-Pinzon">Wilma Suarez-Pinzon</name>
</author>
<author>
<name sortKey="Deng, Xuelian" sort="Deng, Xuelian" uniqKey="Deng X" first="Xuelian" last="Deng">Xuelian Deng</name>
</author>
<author>
<name sortKey="Chen, Xiaoyan" sort="Chen, Xiaoyan" uniqKey="Chen X" first="Xiaoyan" last="Chen">Xiaoyan Chen</name>
</author>
<author>
<name sortKey="Thorp, Edward B" sort="Thorp, Edward B" uniqKey="Thorp E" first="Edward B" last="Thorp">Edward B. Thorp</name>
</author>
<author>
<name sortKey="Hering, Bernhard J" sort="Hering, Bernhard J" uniqKey="Hering B" first="Bernhard J" last="Hering">Bernhard J. Hering</name>
</author>
<author>
<name sortKey="Miller, Stephen D" sort="Miller, Stephen D" uniqKey="Miller S" first="Stephen D" last="Miller">Stephen D. Miller</name>
</author>
<author>
<name sortKey="Luo, Xunrong" sort="Luo, Xunrong" uniqKey="Luo X" first="Xunrong" last="Luo">Xunrong Luo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27893617</idno>
<idno type="pmid">27893617</idno>
<idno type="doi">10.1097/TP.0000000000001489</idno>
<idno type="pmc">PMC5441974</idno>
<idno type="wicri:Area/Main/Corpus">000932</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000932</idno>
<idno type="wicri:Area/Main/Curation">000932</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000932</idno>
<idno type="wicri:Area/Main/Exploration">000932</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential Role of B Cells and IL-17 Versus IFN-γ During Early and Late Rejection of Pig Islet Xenografts in Mice.</title>
<author>
<name sortKey="Kang, Hee Kap" sort="Kang, Hee Kap" uniqKey="Kang H" first="Hee Kap" last="Kang">Hee Kap Kang</name>
<affiliation wicri:level="2">
<nlm:affiliation>1 Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL. 2 Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China. 3 Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL. 4 Department of Surgery, University of Minnesota, Schulze Diabetes Institute, Minneapolis, MN. 5 Division of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China. 6 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL. 7 Department of Microbiology and Immunology, Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>1 Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL. 2 Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China. 3 Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL. 4 Department of Surgery, University of Minnesota, Schulze Diabetes Institute, Minneapolis, MN. 5 Division of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China. 6 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL. 7 Department of Microbiology and Immunology, Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shusen" sort="Wang, Shusen" uniqKey="Wang S" first="Shusen" last="Wang">Shusen Wang</name>
</author>
<author>
<name sortKey="Dangi, Anil" sort="Dangi, Anil" uniqKey="Dangi A" first="Anil" last="Dangi">Anil Dangi</name>
</author>
<author>
<name sortKey="Zhang, Xiaomin" sort="Zhang, Xiaomin" uniqKey="Zhang X" first="Xiaomin" last="Zhang">Xiaomin Zhang</name>
</author>
<author>
<name sortKey="Singh, Amar" sort="Singh, Amar" uniqKey="Singh A" first="Amar" last="Singh">Amar Singh</name>
</author>
<author>
<name sortKey="Zhang, Lei" sort="Zhang, Lei" uniqKey="Zhang L" first="Lei" last="Zhang">Lei Zhang</name>
</author>
<author>
<name sortKey="Rosati, James M" sort="Rosati, James M" uniqKey="Rosati J" first="James M" last="Rosati">James M. Rosati</name>
</author>
<author>
<name sortKey="Suarez Pinzon, Wilma" sort="Suarez Pinzon, Wilma" uniqKey="Suarez Pinzon W" first="Wilma" last="Suarez-Pinzon">Wilma Suarez-Pinzon</name>
</author>
<author>
<name sortKey="Deng, Xuelian" sort="Deng, Xuelian" uniqKey="Deng X" first="Xuelian" last="Deng">Xuelian Deng</name>
</author>
<author>
<name sortKey="Chen, Xiaoyan" sort="Chen, Xiaoyan" uniqKey="Chen X" first="Xiaoyan" last="Chen">Xiaoyan Chen</name>
</author>
<author>
<name sortKey="Thorp, Edward B" sort="Thorp, Edward B" uniqKey="Thorp E" first="Edward B" last="Thorp">Edward B. Thorp</name>
</author>
<author>
<name sortKey="Hering, Bernhard J" sort="Hering, Bernhard J" uniqKey="Hering B" first="Bernhard J" last="Hering">Bernhard J. Hering</name>
</author>
<author>
<name sortKey="Miller, Stephen D" sort="Miller, Stephen D" uniqKey="Miller S" first="Stephen D" last="Miller">Stephen D. Miller</name>
</author>
<author>
<name sortKey="Luo, Xunrong" sort="Luo, Xunrong" uniqKey="Luo X" first="Xunrong" last="Luo">Xunrong Luo</name>
</author>
</analytic>
<series>
<title level="j">Transplantation</title>
<idno type="eISSN">1534-6080</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>B-Lymphocytes (immunology)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Enzyme-Linked Immunosorbent Assay (MeSH)</term>
<term>Graft Rejection (immunology)</term>
<term>Graft Rejection (metabolism)</term>
<term>Graft Rejection (pathology)</term>
<term>Graft Survival (immunology)</term>
<term>Heterografts (MeSH)</term>
<term>Immune Tolerance (MeSH)</term>
<term>Interferon-gamma (biosynthesis)</term>
<term>Interleukin-17 (biosynthesis)</term>
<term>Islets of Langerhans Transplantation (immunology)</term>
<term>Male (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Hétérogreffes (MeSH)</term>
<term>Interféron gamma (biosynthèse)</term>
<term>Interleukine-17 (biosynthèse)</term>
<term>Lymphocytes B (immunologie)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Rejet du greffon (anatomopathologie)</term>
<term>Rejet du greffon (immunologie)</term>
<term>Rejet du greffon (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Survie du greffon (immunologie)</term>
<term>Test ELISA (MeSH)</term>
<term>Tolérance immunitaire (MeSH)</term>
<term>Transplantation d'ilots de Langerhans (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Interferon-gamma</term>
<term>Interleukin-17</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Rejet du greffon</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Interféron gamma</term>
<term>Interleukine-17</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Lymphocytes B</term>
<term>Rejet du greffon</term>
<term>Survie du greffon</term>
<term>Transplantation d'ilots de Langerhans</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>B-Lymphocytes</term>
<term>Graft Rejection</term>
<term>Graft Survival</term>
<term>Islets of Langerhans Transplantation</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Graft Rejection</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Rejet du greffon</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Graft Rejection</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Heterografts</term>
<term>Immune Tolerance</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Facteurs temps</term>
<term>Hétérogreffes</term>
<term>Modèles animaux de maladie humaine</term>
<term>Mâle</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Test ELISA</term>
<term>Tolérance immunitaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Xenogeneic islet transplantation is an emerging therapeutic option for diabetic patients. However, immunological tolerance to xenogeneic islets remains a challenge.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>The current study used a pig-to-mouse discordant xenogeneic islet transplant model to examine antidonor xenogeneic immune responses during early and late rejection and to determine experimental therapeutic interventions that promote durable pig islet xenograft survival.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We found that during early acute rejection of pig islet xenografts, the rejecting hosts exhibited a heavy graft infiltration with B220 B cells and a robust antipig antibody production. In addition, early donor-stimulated IL-17 production, but not IFN-γ production, dominated during early acute rejection. Recipient treatment with donor apoptotic 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide-treated splenocytes significantly inhibited antidonor IL-17 response, and when combined with B cell depletion and a short course of rapamycin led to survival of pig islet xenografts beyond 100 days in approximately 65% recipients. Interestingly, treated recipients in this model experienced late rejection between 100 and 200 days posttransplant, which coincided with B cell reconstitution and an ensuing emergence of a robust antidonor IFN-γ, but not IL-17, response.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These findings reveal that early and late rejection of pig islet xenografts may be dominated by different immune responses and that maintenance of long-term xenogeneic tolerance will require strategies that target the temporal sequence of antixenogeneic immune responses.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27893617</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1534-6080</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>101</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2017</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Transplantation</Title>
<ISOAbbreviation>Transplantation</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential Role of B Cells and IL-17 Versus IFN-γ During Early and Late Rejection of Pig Islet Xenografts in Mice.</ArticleTitle>
<Pagination>
<MedlinePgn>1801-1810</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1097/TP.0000000000001489</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Xenogeneic islet transplantation is an emerging therapeutic option for diabetic patients. However, immunological tolerance to xenogeneic islets remains a challenge.</AbstractText>
<AbstractText Label="METHODS">The current study used a pig-to-mouse discordant xenogeneic islet transplant model to examine antidonor xenogeneic immune responses during early and late rejection and to determine experimental therapeutic interventions that promote durable pig islet xenograft survival.</AbstractText>
<AbstractText Label="RESULTS">We found that during early acute rejection of pig islet xenografts, the rejecting hosts exhibited a heavy graft infiltration with B220 B cells and a robust antipig antibody production. In addition, early donor-stimulated IL-17 production, but not IFN-γ production, dominated during early acute rejection. Recipient treatment with donor apoptotic 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide-treated splenocytes significantly inhibited antidonor IL-17 response, and when combined with B cell depletion and a short course of rapamycin led to survival of pig islet xenografts beyond 100 days in approximately 65% recipients. Interestingly, treated recipients in this model experienced late rejection between 100 and 200 days posttransplant, which coincided with B cell reconstitution and an ensuing emergence of a robust antidonor IFN-γ, but not IL-17, response.</AbstractText>
<AbstractText Label="CONCLUSIONS">These findings reveal that early and late rejection of pig islet xenografts may be dominated by different immune responses and that maintenance of long-term xenogeneic tolerance will require strategies that target the temporal sequence of antixenogeneic immune responses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Hee Kap</ForeName>
<Initials>HK</Initials>
<AffiliationInfo>
<Affiliation>1 Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL. 2 Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China. 3 Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL. 4 Department of Surgery, University of Minnesota, Schulze Diabetes Institute, Minneapolis, MN. 5 Division of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China. 6 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL. 7 Department of Microbiology and Immunology, Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shusen</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dangi</LastName>
<ForeName>Anil</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xiaomin</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Amar</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rosati</LastName>
<ForeName>James M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Suarez-Pinzon</LastName>
<ForeName>Wilma</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Xuelian</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xiaoyan</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thorp</LastName>
<ForeName>Edward B</ForeName>
<Initials>EB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hering</LastName>
<ForeName>Bernhard J</ForeName>
<Initials>BJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Stephen D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Xunrong</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DP2 DK083099</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS026543</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL122309</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA060553</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 AI102463</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Transplantation</MedlineTA>
<NlmUniqueID>0132144</NlmUniqueID>
<ISSNLinking>0041-1337</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020381">Interleukin-17</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>82115-62-6</RegistryNumber>
<NameOfSubstance UI="D007371">Interferon-gamma</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001402" MajorTopicYN="N">B-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004797" MajorTopicYN="N">Enzyme-Linked Immunosorbent Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006084" MajorTopicYN="N">Graft Rejection</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006085" MajorTopicYN="N">Graft Survival</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064593" MajorTopicYN="N">Heterografts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007108" MajorTopicYN="Y">Immune Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007371" MajorTopicYN="N">Interferon-gamma</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020381" MajorTopicYN="N">Interleukin-17</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016381" MajorTopicYN="N">Islets of Langerhans Transplantation</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27893617</ArticleId>
<ArticleId IdType="doi">10.1097/TP.0000000000001489</ArticleId>
<ArticleId IdType="pmc">PMC5441974</ArticleId>
<ArticleId IdType="mid">NIHMS817111</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biomed Biotechnol. 2011;2011:560850</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22131812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transplantation. 2003 Mar 15;75(5):586-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12640294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Apr 1;180(7):4487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenotransplantation. 2006 Nov;13(6):536-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17059581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2015 May 7;125(19):3014-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25740827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2010 Sep;68(3):369-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20641064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2013 Sep;62(9):3143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23852699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 2015 Aug 19;26(8):1713-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2009 Dec;60(12):3734-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19950285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2014 Sep 1;210(5):762-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24604821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Transplant. 2015 Jun;15(6):1475-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25807873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2007 Sep;37(9):2400-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Apr 15;182(8):4938-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19342673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14292-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20660725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Feb 15;178(4):2212-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18796615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2000 Mar 15;164(6):3434-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10706740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2013 Jun 5;5(188):188ra75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23740901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Jul 15;189(2):804-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22696445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transplantation. 2002 Feb 15;73(3):437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transpl Immunol. 2009 Jun;21(2):81-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19427901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2013 Dec 15;398-399:33-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24055128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenotransplantation. 2006 May;13(3):248-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2012 Jul;42(7):1717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22585671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2008 Dec;38(12):3274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19039774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transplantation. 1999 Feb 15;67(3):435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10030292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stem Cells. 2016 May;34(5):1142-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26865545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2014 Mar;258(1):241-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24517437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Sep 1;187(5):2405-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Vaccin Immunother. 2015;11(4):851-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25933181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Organ Transplant. 2012 Feb;17(1):8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22186097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Transplant. 2012 Dec;12(12):3272-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22958948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2008 Dec 22;205(13):3133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19047438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2009 Apr 23;5(4):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19380112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Oct 29;6:8644</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26511769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenotransplantation. 2003 Mar;10(2):178-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12588650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Transplant. 2015;24(6):1155-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24759564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenotransplantation. 2014 May-Jun;21(3):244-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24645827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2011 Jul;32(20):4517-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21458857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ethnopharmacol. 2015 Aug 22;172:247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26096188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Transplant. 2012 Nov;12(11):2920-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22883222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2007 Jun;8(6):630-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17450144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2008 Jan 21;205(1):219-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18195070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2011 Aug;38(2):285-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21436349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Heart Lung Transplant. 2015 Jul;34(7):933-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25682556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2009 Mar 16;206(3):525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19273624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transplantation. 2015 Apr;99(4):693-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25675194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2014 Jun 15;192(12):6092-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24808363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Blood Marrow Transplant. 2015 Mar;21(3):421-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25543092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Sep 15;185(6):3326-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25136095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2010 Sep;177(3):1265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20651239</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Xiaoyan" sort="Chen, Xiaoyan" uniqKey="Chen X" first="Xiaoyan" last="Chen">Xiaoyan Chen</name>
<name sortKey="Dangi, Anil" sort="Dangi, Anil" uniqKey="Dangi A" first="Anil" last="Dangi">Anil Dangi</name>
<name sortKey="Deng, Xuelian" sort="Deng, Xuelian" uniqKey="Deng X" first="Xuelian" last="Deng">Xuelian Deng</name>
<name sortKey="Hering, Bernhard J" sort="Hering, Bernhard J" uniqKey="Hering B" first="Bernhard J" last="Hering">Bernhard J. Hering</name>
<name sortKey="Luo, Xunrong" sort="Luo, Xunrong" uniqKey="Luo X" first="Xunrong" last="Luo">Xunrong Luo</name>
<name sortKey="Miller, Stephen D" sort="Miller, Stephen D" uniqKey="Miller S" first="Stephen D" last="Miller">Stephen D. Miller</name>
<name sortKey="Rosati, James M" sort="Rosati, James M" uniqKey="Rosati J" first="James M" last="Rosati">James M. Rosati</name>
<name sortKey="Singh, Amar" sort="Singh, Amar" uniqKey="Singh A" first="Amar" last="Singh">Amar Singh</name>
<name sortKey="Suarez Pinzon, Wilma" sort="Suarez Pinzon, Wilma" uniqKey="Suarez Pinzon W" first="Wilma" last="Suarez-Pinzon">Wilma Suarez-Pinzon</name>
<name sortKey="Thorp, Edward B" sort="Thorp, Edward B" uniqKey="Thorp E" first="Edward B" last="Thorp">Edward B. Thorp</name>
<name sortKey="Wang, Shusen" sort="Wang, Shusen" uniqKey="Wang S" first="Shusen" last="Wang">Shusen Wang</name>
<name sortKey="Zhang, Lei" sort="Zhang, Lei" uniqKey="Zhang L" first="Lei" last="Zhang">Lei Zhang</name>
<name sortKey="Zhang, Xiaomin" sort="Zhang, Xiaomin" uniqKey="Zhang X" first="Xiaomin" last="Zhang">Xiaomin Zhang</name>
</noCountry>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Kang, Hee Kap" sort="Kang, Hee Kap" uniqKey="Kang H" first="Hee Kap" last="Kang">Hee Kap Kang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000873 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000873 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27893617
   |texte=   Differential Role of B Cells and IL-17 Versus IFN-γ During Early and Late Rejection of Pig Islet Xenografts in Mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27893617" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020